skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schoenberg, Frederic P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We present a fast, accurate estimation method for multivariate Hawkes self-exciting point processes widely used in seismology, criminology, finance and other areas. There are two major ingredients. The first is an analytic derivation of exact maximum likelihood estimates of the nonparametric triggering density. We develop this for the multivariate case and add regularization to improve stability and robustness. The second is a moment-based method for the background rate and triggering matrix estimation, which is extended here for the spatiotemporal case. Our method combines them together in an efficient way, and we prove the consistency of this new approach. Extensive numerical experiments, with synthetic data and real-world social network data, show that our method improves the accuracy, scalability and computational efficiency of prevailing estimation approaches. Moreover, it greatly boosts the performance of Hawkes process-based models on social network reconstruction and helps to understand the spatiotemporal triggering dynamics over social media. 
    more » « less